Human Factors in Medical Modeling and Simulation

Mark W. Scerbo, Ph. D. Department of Psychology Old Dominion University

Human Factors Engineering

· a discipline concerned with specifying the capacities and limitations of the human and designing machines that accommodate the limits of the human

GOALS OF HUMAN FACTORS

- · reduce errors
- increase safety
- increase reliability of
- reduce personnel requirements
- improve maintainability increase efficiency
- increase productivity
- · improve the working environment
- reduce fatigue and stress
- increase human comfort
- reduce training requirements reduce boredom and monotony
 - increase convenience of use
 - · increase user acceptance
 - increase job satisfaction · enlarge the job
 - · improve the quality of life

Why Human Factors?

Why Human Factors?

· To the human engineer, man is a thin flexible sack filled with thirteen gallons of fibrous and gelatinous material, inadequately supported by an articulated boney framework. Surmounting this sack is a bone box filled with a gelatinous matter attached to the sack by means of a flexible coupling of bony and fibrous composition (Stapp, 1948).

Human Factors is just good common sense!

Pop Quiz True or False

- 1) Assess the user population and design for the average user.
- 2) When you install a light switch, the lever should move up to turn on the light.
- 3) Practice makes perfect.
- 4) Good design means getting it right the first time.
- 5) Initial performance is a good predictor training success.

Pop Quiz True or False

- 1) Assess the user population and design for the average user. (False Bailey, 1996)
- 2) When you install a light switch, the lever should move up to turn on the light. (False Wickens, 1992)
- 3) Practice makes perfect. (False Schneider, 1985)
- 4) Good design means getting it right the first time. (False Gould et al., 1987)
- 5) Initial performance is a good predictor training success. (False Schneider, 1985)

History of Human Factors

- The early 1900s:
 - Taylor, Gilbreth Task analysis and work efficiency studies
- Mayo Hawthorne studies of lighting and work productivity
- 1940s:
 - WWII, the problem of vigilance
 - AT&T Bell Laboratories
- 1960s:
 - Aerospace program
- 1970s 1980s:
 - Human-computer interface
 - Usability engineering
- 1990s 2000
 - **World Wide Web and e-commerce**

Major Human Factors R&D Topics

- Accidents, Safety, & Human Error
- **Aerospace Systems**
- **Attentional Processes**
- Automation, Expert Systems Biomechanics, Anthropometrics, and Work Physiology Cognitive Processes
- **Cognitive Engineering**
- Communication Systems
- Computer Systems Consumer Products, Tools
- **Displays & Controls**

- Health & Medical Systems
- Individual Differences
- Macroergonomics and the Environment
- Manufacturing, Process Control Systems Psychological States
- Psychomotor Processes
- Sensory & Perceptual Processes
- Simulation & Virtual Reality
- Surface Transportation Systems
 Training, Education, & Instructional Systems

Problems in Medical Simulation

 Prior to 2002 – no data regarding validity of medical simulators

Problems in Medical Simulation

- Prior to 2002 no data regarding validity of medical simulators
- Post 2002 focus on validity, not training transfer

Training Transfer

Training Transfer

- Identical elements
- Transfer through principles
- Fidelity
 - Physical
 - Functional

Training Transfer

- Learning theory
- · Individual differences
- Goals
 - Skill acquisition
 - Retention

Measuring Training Transfer

- Time savings
 - (Zcontrol Ztrain)/Zcontrol X100
- Transfer Effectiveness Function
 - (Ycontrol-criterion Ytrain-criterion)/Xsimulator-train
- Transfer Cost Ratio
 - Cost in Op. Env./Cost with Simulator

Problems in Medical Simulation

- Prior to 2002 no data regarding validity of medical simulators
- Post 2002 focus on validity, not training transfer
- Focus on performance improvement without understanding the nature of human error

Attentional Resources and Workload

Problems in Medical Simulation

- Prior to 2002 no data regarding validity of medical simulators
- Post 2002 focus on validity, not training transfer
- Focus on performance improvement without understanding the nature of human error
- On the horizon...

Problems in Medical Simulation

• Drive toward more complex automated surgical systems.

Complex Automated Systems Be careful what you wish for!

Complex Automated Systems

- Increase passive monitoring demands at the expense of active involvement.
- Can induce complacency.
- Often result in "automation surprises".
- Fail in a less predictable manner.
- Problems propagate more quickly through highly couples subsystems.

Improving Human Performance

Improving Human Performance

- Enhancement
- Augmentation
- Removal of impediments

Improving Human Performance

- Enhancement training and education
- Augmentation external aids
- Removal of impediments work environment

Improving Human Performance Selection Training Design

Performance within the Work Environment

Virtual Environments

- Virtual environments (VEs) allow us to study training, external aids, and the work environment all one place. VEs can be developed to address an unlimited range of scenarios including:
 - Operating rooms
 - Trauma/emergency rooms
 - Intensive care operations
 - Mobile emergency medical response
 - Natural and man-made disasters resulting in mass casualties

Thank You!

Mark W. Scerbo mscerbo@odu.edu

References

- Bailey, R.W. (1996). Human performance engineering: Designing high quality professional user interfaces for compute products, applications and systems. Upper Saddle River, NJ: Prentice Hall.
- Gould, J.D., Bois, S. J., & Ukelson, J. (1997). How to design usable systems. In M. Helander, T. K. Landauer, & P. V. Prabhu (Eds.), Handbook of human-computer interaction (pp. 231-254). North-Holland: Elsevier Science Publishers.
- Norman, D., & Bobrow, D. (1975). On data-limited and resource-limited processing. Journal of Comitive Psychology, 7, 44-60
- Reason J. T. (1990). Human Error. New York: Cambridge University Press.
- Scerbo, M. W., & Weireter, L. J., Bliss, J. P., Schmidt, E. A., & Hanner-Builey, H. (2005). Assessing surgical skill training under hazardous conditions in a virtual environment. Medicine Meets Virtual Reality XIII. Long Beach, CA.
- . Schneider, W. (1985). Training high performance skills: Fallacies and guidelines. Human Factors, 27, 285-300
- Wickens, C. D. (1984). Engineering psychology and human performance. Columbus, OH: Charles Merri
- Wickens, C. D. (1984). Processing resources and attention. In R. Parasuraman & D. R. Davies (Eds.), Varieties of Attention (p. 63-102). Orlando. FL: Academic Press.