
Real-time interactions and synchronization
of voxel-based collaborative virtual environments

Eric Acosta∗, Alan Liu

National Capital Area Medical Simulation Center
Uniformed Services University

ABSTRACT

Collaborative virtual environments (C-VE) facilitate team-oriented
training on Virtual Reality-based surgical simulators. Many C-VEs
replicate the VE on each user’s machine to allow for real-time inter-
actions. However, this solution does not work well when modifying
voxel-based C-VEs because large and frequent volumetric updates
make it difficult to synchronize the C-VE. This paper describes a
hybrid depth-buffered image (DBI) and geometry-based rendering
method created to simulate visual interactions between local virtual
bone cutting tools and remotely maintained volumetric bone ma-
terial for a craniotomy simulator. For real-time interactions, users
only store a DBI of the volumetric C-VE and composite it with ren-
dered images of surgical tools. Additionally, we describe methods
to combat network bandwidth/latency to remotely simulate haptic
and bone drilling interactions between users’ tools and the volumet-
ric VE. For haptic feedback, a multi-rate solution [9] allows users to
construct a local approximation of the volumetric C-VE to compute
new forces. Only 2D DBI updates are required to synchronize dif-
ferent users when the bone changes due to drilling. Our approach
provides an improved performance over a replicated VE that uses
3D model-based updates.

Keywords: Collaborative virtual environment, virtual reality,
depth buffered image, surgical simulation, remote volume render-
ing.

Index Terms: I.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques

1 INTRODUCTION

Virtual Reality-based medical surgical simulators enable surgeons
to train on virtual patients. Many existing surgical simulators are
stand-alone systems and focus on training a single user at a time.
Collaborative Virtual Environments (C-VEs) enable multiple par-
ticipants, which are often remotely located, to interact within a
shared virtual world. This capability opens up a wide array of pos-
sibilities in many areas such as the medical field. Several efforts
have been directed toward leveraging the capabilities of C-VEs for
collaborative training [17, 14, 18, 13]. Our motivation for the de-
scribed work is the development of a Virtual Reality-based surgi-
cal simulator to assist with training for a craniotomy procedure.
A craniotomy is a surgical procedure to remove a section of the
skull in order to access the brain for treatment. In [4], volumet-
ric haptic, bone erosion, and visual algorithms have been devel-
oped to simulate the interactions between virtual bone cutting tools
and voxel-based bone material for a stand-alone system. The algo-
rithms make it possible to simulate several surgical tools, such as
the bone drill and perforator shown in Figure 1, for a craniotomy.

∗e-mail: eacosta@simcen.usuhs.mil; http://simcen.usuhs.mil

Figure 1: Example simulated (a) bone drill and (b) perforator surgi-
cal tools drilling into voxelized block representing bone material. (c)
Perforator cutting burrhole in virtual patient’s skull.

This paper extends our previous work to support networked inter-
actions for collaborative surgical training. Training multiple users
typically requires the use of multiple computer systems, which are
connected through a local or wide-area network. The separation
of the users (and the connection medium joining the different sys-
tems) inevitably introduces delays within shared interactions. Many
C-VEs maximize local responsiveness of the interactions through
localization and database replication [20, 16]. Maintaining local
copies of the C-VE on different systems requires a consistency con-
trol method to synchronize each user’s local snapshot of the VE. In
C-VEs, users’ reactions and decisions are based on the current view
of the shared environment. Thus, it is critical for medical C-VEs to
use a fairly strong consistency model to minimize discrepancies in
each VE.

Recently, Hutchins et al. [14] and Morris et al. [18] described
collaborative bone drilling capabilities between two users for tem-
poral bone surgery. Both of their approaches replicate the volumet-
ric VE on each user’s system and send volumetric model updates

Figure 2: Collaborative virtual environment client-server architecture.

over a local Ethernet network to synchronize the volumetic C-VE.
We found that maintaining local copies of the volumetric VE on
each user’s system makes it difficult to synchronize the C-VE. The
volumetric VE is modified at the voxel-level as the user drills away
bone material. Modifications to the bone adds significant process-
ing overhead for users’ systems to handle large frequent updates
from other users. Additionally, some lower-end systems may lack
the computational and/or rendering capacity to handle the volumet-
ric VE. Our synchronization solution is to centralize the volumetric
VE within a central server. Maintaining the volumetric VE on a
single machine allows us to avoid using consistency control mech-
anisms such as ownership locking and transfer or sequential shar-
ing [20]. The major drawback to centralizing the volumetric VE is
that remote rendering and interactions is limited by network latency.
This makes it difficult to interact with the VE in real-time. To over-
come this issue, we use a hybrid depth-buffered image (DBI) and
geometry-based rendering method in order to combine remote vol-
ume rendering of the skull with local geometry rendering of virtual
tools and patient anatomy. A method is presented to correctly cre-
ate DBIs with texture-based volume rendering. The described work
makes it possible for the tools to visually interact with the bone ma-
terial in real-time. Furthermore, since the server maintains the only
copy of the volumetric VE, we describe methods to combat network
bandwidth and latency issues to remotely simulate haptic and bone
drilling interactions between clients’ tools and the volumetric VE
in real-time. Only two-dimensional visual updates (of the modified
areas within rendered volume images) are required to synchronize
clients’ local DBI representation of the volumetric C-VE.

The remainder of the paper is organized as follows. Section
2 overviews related work. Our volumetric C-VE approach is de-
scribed in Section 3 and experimental results are given in Section
4. The paper is then concluded in Section 5.

2 RELATED WORK

Considerable work has been performed for simulating bone drilling
on stand-alone systems. Aguas et al [6, 5] developed a physically-
based visual and haptic model for bone drilling. Petersik et al.
[19] developed a method to simulate bone drilling interactions at
the sub-voxel level. Most existing work has focused on simulating
spherical drill bits for temporal bone surgery. In [4], we describe
haptic and visual algorithms to easily simulate different types of
bone drilling tools used to perform a craniotomy. Additional bone
drilling simulation works can be found in the literature.

Limited work has also been performed for collaborative bone
drilling environments. Morris et al. [18] and Hutchins et al. [14]
allow two users to connect together over a network for collaborative

interactions. The C-VE is useful to allow an instructor to monitor a
trainee’s performance and interactively provide feedback. In [18],
a user can also choose to drive their local haptic device using the
forces generated by the remote participant’s drill. [14] provides ad-
ditional tools, such as a marker and eraser, to allow the instructor
or student to draw on the scene. Both of their setups replicate the
volumetric temporal bone VE locally and require the bone model
to be updated at the volumetric-level for synchronization. Addi-
tionally, a second local polygonal mesh-based representation needs
to be updated for visual display. This 3D model-based approach
can be very computationally expensive, especially as the modified
volume size increases. Additionally, only systems that provide ade-
quate computational and rendering capabilities to handle the entire
C-VE can be used to run the simulators.

In addition to these collaborative bone drilling environments,
work has been performed to support collaborative haptic interac-
tions. Montgomery et al. [17] have developed a framework for sur-
gical simulation development. The framework provides a method
to remotely communicate with haptic devices and can be used to
develop C-VEs. A mechanism is also provided for capturing the
screen image, compressing it, and sending it to remote users for
display replication. Kim et al [15] were able to achieve haptic col-
laboration across the Atlantic Ocean for a simple virtual box lifting
task. A predictive collision detection algorithm and three layers of
damping (in the box’s dynamics, between the virtual cube and the
haptic device, and to remove hand tremor) made the task possible.
Gunn et al. [13] have developed a surgical training prototype for a
cholecystectomy, which allows an instructor and remote student to
work in the same VE. Their work utilizes a “pseudo-physics” model
to help control instabilities over long distance haptic collaboration.
The model is able to withstand large latencies for highly damped
soft objects. The work was demonstrated for haptic collaborations
between Australia and California. Unfortunately, these works de-
pend on having a local copy of the VE available. In our case, the
users do not have a copy of the volumetric bone, so a multi-rate
haptic interface method [9] that was originally developed for de-
formable objects is utilized to approximate the volumetric model to
compute haptic feedback. Additional details are given in Section 3.

Previous work on remote volume rendering and image-based
rendering exists. The framework described by Engel et al. [11]
and SGI’s VizServer [3] maintains and renders a volumetric VE on
a central server. User interface events from clients are transmitted
to the server and resulting images are returned for display. With
this setup, clients can leverage the capabilities of more powerful
servers. However, low responsiveness in the interactions may occur
due to network delays. This performance trade-off is unacceptable

for our application. Our surgical tools need to be able to interact
with the volumetric VE in real-time.

Image-based rendering provides an alternative to traditional
geometry-based rendering methods. Many image-based rendering
techniques exist [22, 23]. One major advantage of image-based ren-
dering techniques over geometry-based rendering is that the image
can be rendered independent of the VE complexity. Instead, render-
ing performance is dependent on the image resolution used. This
makes real-time interactions with complex scenes possible. For ex-
ample, for an architectural walk through [8] and a city scene [24] an
image can replace distant parts of the scene. Geometrical models
can then replace the images when the user approaches the geometry
depicted in the images. Depth-buffered images (DBI) extend RGB
color images to include a depth component. DBIs are commonly
used to distribute large datasets and complex scenes over different
rendering nodes and then composite partial images into final images
[7, 25, 26].

3 COLLABORATIVE VIRTUAL ENVIRONMENT

In our application, we made the observations that most of the vol-
ume remains unchanged from frame-to-frame, and modifications
only occur to areas where a tool cuts away bone material. On the
other hand, the position and orientation of the virtual tools can
change every frame. Also, the viewpoint of the VE remains rel-
atively fixed and does not change often. Based on these observa-
tions, we are able to maintain a volumetric VE representing the
skull remotely and the virtual tools and other patient anatomy lo-
cally. Users only maintain a DBI of the volumetric bone VE. The
DBI is remotely generated by a server that manages the volumet-
ric VE. The DBI is then composited locally with rendered surgical
tools and patient anatomy.

3.1 Architectural overview

The client-server architecture in Figure 2 is used to establish the
C-VE. The server is dedicated to maintaining the volumetric VE
and performing the calculations necessary to simulate virtual tool
interactions. A user’s system is considered a client.

The server consists of six main modules. The Volumetric Bone
Dataset is the voxel-based dataset used to model the bone material.
The representation of the virtual tools [4], which is used to com-
pute haptic interactions and bone drilling, is maintained within the
Virtual Tool Modeling. The Haptic Interaction Simulator receives
tool update data, such as position/orientation and drilling speed, to
compute haptic interactions between a virtual tool and the bone ma-
terial. A force is generated based on the haptic interaction and sent
to the client. The tool update data are added to a Tool Update Queue
for the server to compute bone drilling. The Bone Drilling Simu-
lator checks the queue for new tool updates and computes bone
drilling between the virtual tool and the bone material. If the bone
is modified while drilling, the Graphics Renderer generates a new
DBI from the volume and updates the clients.

A client’s system also contains six main modules. The Depth-
Buffered Region maintains a DBI (for the entire window) of the vol-
umetric VE. The Graphics Update Manager receives DBI updates
from the server and applies them to the Depth-Buffered Region. Re-
alistic 3D models of bone cutting tools have been created from
real surgical tools and are stored within the Geometry Database.
The database also stores 3D models of virtual patient anatomy. A
Graphics Renderer renders the 3D models of the user’s current tool
and the patient, and composites them with the Depth-Buffered Re-
gion to generate visual feedback. A PHANTOM haptic device [2]
provides haptic feedback to the user based on interactions between
a virtual tool and the bone material. The Haptics Update Manager
sends tool updates to the server’s Haptic Interaction Simulator and
receives new force updates. The force updates are utilized by the

Figure 3: Fragment program to correct depth values.

Multi-rate Haptics Renderer in order to interpolate new forces be-
tween force updates from the server.

3.2 Volumetric bone environment

The volumetric bone VE is maintained on the server. The client
does not store a local copy of the volumetric VE. Instead, a DBI is
used to visually represent the volumetric VE on the client’s system.
The DBI stores the RGB color and z-depth information for each
pixel. The server’s Graphics Renderer generates new DBIs for the
bone in order to update clients.

Three-dimensional texture-based volume rendering is used to
generate shaded volumetric images of the bone [4]. To utilize a
video card’s texturing hardware for volume rendering, datasets are
represented as texture maps and drawn as a stack of textured poly-
gon slices [10]. As the textured slices are rendered back-to-front,
they are blended together by the graphics hardware to generate an
image. The z-buffer stores the distance from the virtual camera to
each rendered pixel in the frame buffer. The z-buffer values are
used for hidden surface removal so that objects closer to the user’s
view obstruct the objects behind it. For texture-based volume ren-
dering, the GPU generates the depth values for the z-buffer based
on the coordinates of the polygonal slices. The same depth calcu-
lations are performed for all slices (and all portions of the slices)
regardless if they are transparent or opaque. This presents a prob-
lem when trying to composite the DBI with a client’s local geomet-
rical 3D models (e.g., virtual tools). Transparent voxels can incor-
rectly obstruct a virtual tool if their corresponding polygonal slices
are closer to the viewer than the virtual tool. This issue is easily
resolved on a stand-alone system by rendering the tool before the
volume. Although, the depth-buffer values are still incorrect, the
alpha blending process creates correct images. Unfortunately, this

Figure 4: Volume’s object (POC) and 3D texture (PTC) coordinates.

Figure 5: Two-pass rendering algorithm to display the C-VE on the client. Pass 1 restores the DBI of the volumetric VE. Pass 2 renders the
surgical tool and the remainder of the patient’s head. Finally the two images are composited by the graphics hardware.

approach is not possible with our setup since the client does not
keep a local copy of the volume. The graphics rendering pipeline
needs to be modified to generate correct DBIs of the volume.

The programmable graphics pipeline of modern GPUs allow Cg
programs [12] to be written and executed by the GPU. A fragment
program is used in [4] to access the volume’s color, opacity, and
surface normal information to shade the volume as it is rendered.
Fragment programs can also overwrite the depth values of rendered
geometry for the z-buffer. We utilize this capability in order to
correctly generate DBIs for texture-based volume rendering. The
method works for both object-aligned and view-aligned slices. The
pseudo-code for the fragment program is given in Figure 3.

As the textured slices are rendered, texture coordinates of voxels
are passed to the fragment program. If a voxel is transparent then
the depth value is simply set to the largest possible depth value of
1.0. Otherwise, the fragment program uses the texture coordinates
to compute the depth value. Figure 4 shows the object coordinates
(POC) and 3D texture coordinates (PTC) of the two opposite corner
points. Texture coordinates are in the range of [0.0, 1.0]. The ob-
ject is centered about its local origin, and the slice coordinates are
based on the volume’s dimensions. To compute the depth value,
PTC is first mapped into a [-0.5, 0.5] range. This new value is then
multiplied with the volume’s dimensions to get POC. As shown in
Figure 3, the x, and y/z coordinates of PTC are treated as different
cases to correctly map from the texture coordinate system to the ob-
ject’s coordinate system. POC is then applied the current Modelview
and Projection matrices, which are acquired from the OpenGL API,
to compute the screen projected coordinate (PPC). Finally, PPC is
converted into normalized device coordinates by performing a per-
spective division and the z depth value is mapped into the [0.0, 1.0]
range.

The z-buffer will contain the correct depth values once the vol-
ume is rendered. The RGB color values reside in a color buffer. The
(R,G,B,z) values for the DBI are acquired from both buffers using
the glReadPixels OpenGL function.

3.3 Hybrid image/geometry-based rendering

A two-pass image/geometry hybrid rendering method is used to
display the C-VE on the client’s system, Figure 5. The first pass
renders the DBI. The OpenGL glDrawPixels function is used to
transfer the image from main memory to the frame buffer. When
the server creates a DBI, it utilizes the same perspective projection
as the client. Images rendered with glDrawPixels undergo similar
transformations as when rendering geometry. Thus, to avoid incor-
rectly adding perspective warping to the image, an orthogonal pro-
jection is used when rendering the image. The original perspective
projection is restored once the image is rendered. The glDrawPix-

els image rendering method is very expensive since a large amount
of pixel data needs to be transferred over the system bus. To over-
come this rendering bottleneck, an OpenGL buffer region is used
to save the DBI into off-screen memory [1]. The buffered region
allows the DBI to be restored into the frame buffer at very high
frame rates. As described in Section 3.4.2, glDrawPixels is only
used when updating the DBI. The second pass renders geometrical
models of the virtual surgical tools and virtual patient. The graph-
ics hardware composites the rendered geometry with the DBI that
is already in the frame buffer to create the final image.

3.4 Networked virtual tools simulation
Since the server maintains the only copy of the volumetric VE,
it computes the interactions between clients’ virtual tools and the
bone material. Thus, we need to utilize methods to overcome net-
work bandwidth and latency issues so users can interact with the
volumetric VE in real-time.

3.4.1 Haptic interactions

The haptics rendering loop typically requires a 1 kHz update rate in
order to maintain haptic stability. Thus, the force calculation time
is restricted by a 1ms time constraint. It is difficult to meet this re-
quirement since the haptic device is controlled by a client, while the
volumetric VE is on the server. Two network communications are
required to send tool information from the client to the server, and
then send computed forces from the server to the client. To main-
tain haptic stability, the force feedback is calculated at a slower rate
outside the main haptic rendering loop. A client’s Haptics Update
Manager sends a tool’s position/orientation and drilling speed to
the server. The server’s Haptic Interaction Simulator utilizes this
information to compute new collision forces. The server maintains
a local representation of the virtual tools [4] to compute haptic in-
teractions. Computing interactions with the rigid bone material at
slower rates can lead to significant force changes between consec-
utive updates. The new forces cannot be directly inserted into the
haptic loop on the client’s system because mechanical instabilities
can be introduced. Cavusoglu et al. [9] described a multi-rate hap-
tic interface method to introduce new forces into the haptic loop
and to interpolate forces (at haptic rates) between force updates.
We utilize this method, to in effect create a local approximation of
the volumetric bone material on the client’s system, for computing
new forces at haptic update rates. Local haptic forces are computed
within a client’s Multi-rate Haptics Renderer. Equation 1 is the
basis for the multi-rate haptic interfacing. A new collision force
(f (PN)) and a local force gradient (∇ f (PN)) are computed by the
server based on the position of the haptic device at the time of cal-
culation (PN). Pn is the device’s position at haptic update rates. A

new force (F(Pn)) is interpolated by the Multi-rate Haptics Ren-
derer based on ∇ f (PN). The interpolated force is a first order ap-
proximation of the change in force based on the deviation of the
haptic device’s position from PN .

F(Pn) = f (PN)+∇ f (PN)(Pn −PN) (1)

The client’s Haptics Update Manager can throttle the update
timing based on how often it sends tool updates to the server. Sim-
ilar to [9] we were able to calculate the force updates as low as 20
Hz using the multi-rate haptic interface. We found 20 Hz to be the
lowest rate possible while still maintaining stability of the haptic
interactions.

3.4.2 Bone drilling

Figure 6: Optimizing visual updates by only sending a depth-buffered
image of modified areas in the volume to clients. BBvolume tracked
while drilling and used to compute BBscreen. Depth-buffered image for
BBscreen captured and updated on client.

The bone drilling capabilities of the client’s tools are computed
separately from the haptic interactions to reduce the force calcu-
lation turn-around time from the server to the client. The server’s
Haptic Interaction Simulator places the tool information that is re-
ceived from clients onto a Tool Update Queue. A Bone Drilling
Simulator checks the queue for new tool updates and computes
bone drilling between the virtual tool and the bone material. A
local representation of the virtual tools is used to compute the bone
erosion [4]. If the bone is modified while drilling, the server’s
Graphics Renderer generates a new DBI from the volume to up-
date clients. Otherwise, no visual updates are sent and the next
queued tool update is processed. To optimize the size of visual
updates, only a DBI of modified areas in the volume are sent to
clients. Figure 6 illustrates the update process. The Bone Drilling
Simulator tracks a three-dimensional bounding box (BBvolume) of
modified voxels within the volume. The BBvolume’s eight corner
points (in object coordinates) are projected into screen coordinates
to determine what area in the window is modified. A two dimen-
sional bounding box (BBscreen) is found in screen coordinates with
the min/max x-y values from BBvolume’s projected corner points.
BBscreen’s coordinates are clipped to ensure they fall within the dis-
play window area. The DBI corresponding to BBscreen is captured
and sent to the clients’ Graphics Update Manager. The client’s
Graphics Renderer is notified when visual updates are received
and updates the modified area within the Depth-Buffered Region.
Since only modified areas are updated, we reduce the bandwidth
requirements for synchronizing the clients. This also restricts ex-
pensive main memory to video memory transfers with glDrawPix-
els to small areas on the screen. It is worth noting that the size of
BBscreen is affected by the virtual camera due to the perspective pro-
jection. The size of BBscreen becomes smaller as the field-of-view
decreases and the volume’s distance from the camera increases.

4 EXPERIMENTS

Several experiments were conducted to evaluate the performance of
the described hybrid update/rendering method and compare it with
a volumetric update/rendering approach. In the later case, each user
maintains a local copy of the C-VE and volumetric updates are used
for synchronization. Volume rendering and haptic interactions are
also computed locally. Two computers were used for testing. Sys-
tem 1 has a dual-core AMD Athlon 64 X2 4800+ processor, 2GB
RAM, and two NVIDA GeForce7800 GTX video cards (256 MB)
in SLI configuration. System 2 has dual Xeon 3.2GHz processors,
2GB RAM, and an NVIDIA Quadro FX 4000 (256 MB) video card.
Graphics rendering is implemented with OpenGL [21]. When com-
paring the two systems, system 1 has greater computational and
graphics rendering capacity than system 2. The two systems were
connected by a 100Mbps local area network.

For the DBI results, system 1 was made the server and system 2
the client. The DBI that is sent to a client requires 4 bytes per pixel
to store the RGB color and z-depth information.

The two systems were placed in a peer-to-peer configuration for
the volumetric update method. The volumetric updates require 1
byte per voxel for bone density value updates. The receiving sys-
tem updates the densities of the local volume, recomputes density
gradient vectors (used for visual and haptic feedback), and updates
volumetric textures used for volume rendering. Since system 2 is
used as the test client for the DBI results, we mostly concentrate on
system 2’s results for comparing the two methods.

4.1 Visual results
We compared the rendering rates that are possible on system 2 using
volume rendering versus the DBI-based hybrid rendering method.
A window size of 500x500 and a screen resolution of 1024x768
was used to display a 1283 volumetric VE. The DBIs were gen-
erated with a virtual camera 13” away from the volume and with
a 60 degree field-of-view. The 1283 volume is 300x300 pixels on
the projected image. Without any interactions to the volume, 57
FPS were possible on average when rendering the volume locally
on system 2. Other factors, such as the complexity of the volume
and the volume’s distance to the virtual camera, affect the volume
rendering rates. For example, rendering a 2563 volume dropped
the rates to 26 FPS. Moving the virtual camera to 63” raised the
rates to 91 FPS. In contrast, the DBI rendering rates are constant
since the same size image is restored for the window at every frame
and no other geometry operations are required. The hybrid render-
ing method allowed average update rates of 990 FPS (a 1,637% in-
crease). This represents an upper bound since only the pre-rendered
2D image is restored.

Next, the possible update rates for updating a DBI versus up-
dating the volume for different BBvolume sizes were evaluated. The
results are based on system 1 updating system 2. The corresponding
DBI sizes (BBscreen) for each tested BBvolume size is listed in Table
1. The width and height of the DBIs are the same since the volume
was centered on the screen and was not rotated. From Figure 7 we
see that the DBI method allows other users to be updated 1.5-2.0x
faster than when updating the volume. Initially, the largest amount
of time (87-90%) is taken by the volume rendering since the en-
tire 1283 volume is re-rendered for both methods. However, as the
volume size increases the greatest amount of time shifts to updating
the actual volume (e.g. computing gradients and updating textures).
For example, the following results are based on updating a 803 vol-
ume size. For the DBI update method, 63% of the time is spent
updating the volume, 21% transmiting/receiveing the update, 13%
creating the DBI (1% for volume rendering and 12% for capturing
the DBI), 3% updating the client’s DBI, and <1% computing bone
erosion. With the volumetric-based update method, 67% of the time
is required to update the volume, 23% to transmit/receive the volu-
metric update, 8% rendering the update, and <1% to compute bone

Figure 7: Update rates for different BBvolume sizes. See Table 1 for
corresponding BBscreen sizes.

Table 1: BBscreen size per BBvolume based on rendering the volume 13”
from the virtual camera and a 5002 window size.

Volume size (voxels) DBI size (pixels)

103 362

203 632

303 872

403 1092

503 1302

603 1482

703 1702

803 1932

erosion. Since the bottleneck for larger volume sizes is updating the
actual volume, we see that the update rates for both update methods
drop with larger volume modifications.

Finally, we compared the size of the updates that are generated
by both methods. Figure 8 provides the results. Since only 1 byte
per voxel is sent, the volumetric update size is N3, where N is the
dimensions of the volume. 4 bytes per pixel is required to send the
RGB color and z-depth information. This results in a 4M2 sized
update, where M is a DBI’s dimensions. Based on these update
size requirements and the BBscreen sizes in Table 1, we see that
the DBI update size is slightly larger than the volumetric updates
up to the third test volume update size. After this point, the vol-
umetric update sizes grow much faster than the DBI updates. De-
spite having a larger update size for very small updates, we saw that
the DBI update method provides significantly faster update rates on
system 2. This is because the cost of rendering the volume is much
more costly than updating and rendering the DBI. The larger vol-
ume sizes only have a little impact on the volumetric update rates
because the bandwidth of the local area network is sufficient to han-
dle the volumetric updates.

4.2 Haptic results

We evaluated the haptic update rates for simulating haptic interac-
tions between the tools in Figure 1 and the volumetric bone. The
multi-rate haptics interface method [9] described in Section 3 was
used for both the DBI and volumetric update methods since sys-
tem 2 cannot calculate haptic interactions for the perforator tool at
1kHz haptic update rates. On system 1, the haptic calculations took
0.56ms and 2.98ms for the bone drill and perforator, respectively.
The bone drill calculations took 1.75ms and the perforator 9.19ms

Figure 8: Size of updates for different BBvolume sizes. See Table 1 for
corresponding BBscreen sizes.

on system 2. Surprisingly, the DBI method allowed higher haptic
update rates on system 2 than computing the interactions locally.
This is because the network round trip only added 0.82ms to the
very fast calculations of system 1. The rendering rates for the bone
drill raised by 27% and the rates for the perforator raised by 142%.

5 CONCLUSION/DISCUSSION

In this paper we describe a method to allow multiple users to in-
teract with voxel-based C-VEs in real-time. We centralize the vol-
umetric skull VE on a server to aid with synchronizing the C-VE.
To overcome performance limitations of remote interactions and
rendering, we describe a hybrid depth-buffered image (DBI) and
geometry-based rendering method. Users only maintain a local DBI
of the volumetric VE. The DBI is composited with locally rendered
geometrical 3D models of patient anatomy and virtual tools. The
tools can visually interact with the volumetric skull VE in real-time.
Methods are also provided to allow the locally controlled virtual
tools to interact with the remote volumetric bone VE. Both haptic
and bone drilling interactions are simulated. A multi-rate haptic in-
terface method [9] is used to overcome network latency to simulate
remote haptic interactions. While drilling, only two-dimensional
updates are required to update clients’ DBI representation of the
volumetric VE for synchronization. To optimize the bandwidth re-
quirements for updating clients, we describe a method to determine
what area of the rendered volume image is modified and only send
the modified area. We also describe a method to correctly create a
DBI using texture-based volume rendering.

For evaluation purposes, we also implemented replicating the
volumetric C-VE on each user’s machine and using volumetric up-
dates to synchronize the local VEs. We found our approach to allow
1.5-2.0x faster update rates than the volumetric update approach.
The update size for the volumetric updates can grow at a N3 rate,
while our method can grow at a 4N2 rate. Our 100 Mbps local area
network is able to accommodate the larger volumetric update sizes
of the replicated volumetic C-VE; however we expect that the larger
updates will have a greater negative impact on the update rates over
a wide area network. Additionally, the volumetric-based updates
may quickly flood the network as the number of clients increases.
Using smaller update sizes should allow our method to scale more
gracefully than a volumetric-based update method. We plan to run
additional experiments to test the scalability and to see how the two
volumetric C-VE methods compare over a wide area network.

Since our C-VE is based on opaque voxelized bone material, we
currently do not address semi-transparency. One possible approach

for supporting semi-transparency is to use a multi-layered depth
image, where each layer represents a certain z-region within the
VE. Each image layer can be rendered back-to-front and be alpha-
blended with local geometrical 3D models. Another approach
might be to use an attenuation function that is based on objects’
materials to approximate semi-transparency.

The viewpoint does not change frequently in our application.
However, if the view does change then the entire DBI needs to be
updated. We are investigating methods to allow the viewpoint to be
quickly changed by the client. The server could have a background
process that renders cached copies of different views to quickly re-
spond to a user’s request to change the viewpoint. The client can
also try to extrapolate new views based on the existing DBIs while
the server generates a new view. Others have addressed issues sim-
ilar to this.

Finally, the DBI is currently just used for visual synchronization
of the different clients. It would be interesting to see if we can also
use the DBI for computing local haptic response.

The greatest beneficiaries of our method will be thin client sys-
tems that lack the computational and/or rendering capacity to simu-
late the volumetric VE in real-time. Although our tested client is not
a very low-end system, it still benefited from our method. Moving
the volume and haptic rendering calculations onto the higher-end
server PC raised the graphics rendering rates by 1,637%. The hap-
tic rendering rates also improved by 27% and 142% for the bone
drill and perforator, respectively. Freeing up additional computa-
tional resources will allow clients’ to perform other work required
by a surgical simultator.

ACKNOWLEDGEMENTS

We would like to thank Penny Christian from Medtronic and Jason
Martin from Stryker for lending us the sets of surgical tools used to
model the virtual instruments for this work.

This work is supported by the U.S. Army Medical Research and
Materiel Command under Contract No. W81WH-05-C-0142. The
views, opinions and/or findings contained in this report are those of
the author(s) and should not be construed as an official Department
of the Army position, policy or decision unless so designated by
other documentation.

REFERENCES

[1] http://oss.sgi.com/projects/ogl-sample/registry/index.html.

[2] http://www.sensable.com.

[3] Sgi opengl vizserver 3.5: visualization and collaboration. Technical
white paper. http://www.sgi.com/pdfs/3263.pdf, 2005.

[4] E. Acosta and A. Liu. Real-time volumetric haptic and visual burrhole

simulation. In IEEE Virtual Reality (To appear), 2007.

[5] M. Agus, A. Giachetti, E. Gobbetti, G. Zanetti, and A. Zorcolo.

Real-time haptic and visual simulation of bone dissection. Presence,

12(1):110–122, 2003.

[6] M. Agus, A. Giachetti, G. Zanetti, and A. Zorcolo. Real-time haptic

and visual simulation of bone dissection. In IEEE Virtual Reality,

pages 209–216, 2002.

[7] J. Ahrens and J. Painter. Efficient sort-last rendering using

compression-based image compositing. In Second Eurographics
Workshop on Parallel Graphics and Visualisation, 1998.

[8] D. G. Aliaga and A. A. Lastra. Architectural walkthroughs using por-

tal textures. In IEEE Visualization, pages 355–362, 1997.

[9] M. C. Cavusoglu and F. Tendick. Multirate simulation for high fidelity

haptic interaction with deformable objects in virtual environments. In

IEEE International Conference on Robotics and Automation (ICRA
2000), pages 2458–2465, 2000.

[10] K. Engel. Interactive visualization of volumetric data on consumer

pc hardware. In IEEE Visualization 2003 Tutorial, Basic illumination
techniques, 2003.

[11] K. Engel, O. Sommer, and T. Ertl. A framework for interactive

hardware-accelerated remote 3d-visualization. In Eurographics Data
Visualization, pages 167–177, 2000.

[12] R. Fernando and M. Kilgard. The Cg Tutorial. Addison-Wesley, 2003.

[13] C. Gunn, M. Hutchins, D. Stevenson, M. Adcock, and P. Youngblood.

Using collaborative haptics in remote surgical training. In WorldHap-
tics, 2005.

[14] M. A. Hutchins, D. R. Stevenson, C. Gunn, A. Krumpholz, T. Adri-

aansen, B. Pyman, and S. O’Leary. Communication in a networked

haptic virtual environment for temporal bone surgery training. Virtual
Reality, pages 1–11, 2005.

[15] J. Kim, H. Kim, B. Tay, M. Manivannan, M. Srinivasan, J. Jordan,

J. Mortensen, M. Oliviera, and M. Slater. Transatlantic touch: a study

of haptic collaboration over long distance. Presence: Teleoperators
and Virtual Environments, 13(3):328–337, 2004.

[16] M. R. Macedonia and M. J. Zyda. A taxonomy for networked virtual

environments. IEEE MultiMedia, 4(1):48–56, 1997.

[17] K. Montgomery, C. Bruyns, J. Brown, G. Thonier, A. Tellier, and

J. Latombe. Spring: A general framework for collaborative, real-time

surgical simulation. In Medicine Meets Virtual Reality, 2002.

[18] D. Morris, C. Sewell, N. Blevins, F. Barbagli, and K. Salisbury. A

collaborative virtual environment for the simulation of temporal bone

surgery. In MICCAI, 2004.

[19] A. Petersik, B. Pflesser, U. Tiede, K. H. Hohne, and R. Leuwer. Haptic

volume interaction with anatomic models at sub-voxel resolution. In

IEEE Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, pages 66–72, 2002.

[20] D. Roberts and R. Wolff. Controlling consistency within collabora-

tive virtual environments. In IEEE International Symposium on Dis-
tributed Simulation and Real-Time Applications, pages 46–52, 2004.

[21] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Programming
Guide, Fourth Edition. Addison-Wesley, 2004.

[22] H.-Y. Shum and S. B. Kang. A review of image-based rendering tech-

niques. In IEEE/SPIE Visual Communications and Image Processing,

pages 2–13, 2000.

[23] H.-Y. Shum, S. B. Kang, and S.-C. Chan. Survey of image-based

representations and compression techniques. IEEE transactions on
circuits and systems for video technology, 13(11):1020–1037, 2003.

[24] M. Wimmer, M. Giegl, and D. Schmalstieg. Fast walkthroughs with

image caches and ray casting. Computers and Graphics, 23(6):831–

838, 1999.

[25] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. Interactive ren-

dering on pc clusters. IEEE Computer Graphics and Applications,

24(4):62–69, July/Aug. 2001.

[26] C. Xavier and M. Christophe. Pipelined sort-last rendering: scalabil-

ity, performance and beyond. In Eurographics Symposium on Parallel
Graphics & Visualization, 2006.

