
3/11/2014

1

Considerations for a Distributed 3D
Virtual

Environment

G. Jamie Cope

Senior Research Engineer

Val G. Hemming Simulation Center

Evolution of the WAVE

• Challenges

– Create a software backbone

– Create a content pipeline

– Provide a dynamic user experience

– Improve visual quality

Challenge: Create a software backbone

• Key pieces

– Cluster synchronization

– Rendering

– Audio

Challenge: Create a software backbone

• The goal:

• Highly configurable and platform independent

• Network-driven software sync
– Sync barriers for input, update, and render (buffer swap)

• Established and active user base

Cluster Sync Complete Extensible Low-Latency Scalable Support

Hardware - -

Chromium -

Flatland -

VR Juggler - -

Cluster Sync Complete Extensible Low-Latency Scalable Support

Hardware - -

Chromium -

Flatland -

VR Juggler - -

Challenge: Create a software backbone

• Testing: VR Juggler

– Latency and scalability

• Designed for clustering, but can it handle ~50 nodes?

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fr
am

e
 r

at
e

Number of Nodes

Frame Rate vs. Cluster size

Challenge: Create a software backbone

3/11/2014

2

• Modular code with callbacks and solid foundation classes

• Plugins for particles and animation

• Efficient state sharing & graph optimization

• Dynamic culling

Rendering Complete Extensible Low-Latency Scalable Support

Crysis/Unreal

Ogre -

OpenSG -

OpenSceneGraph

Rendering Complete Extensible Low-Latency Scalable Support

Crysis/Unreal

Ogre -

OpenSG -

OpenSceneGraph

Challenge: Create a software backbone

• Testing: OSG

– Speed and quality

Mass Casualty Scene

• 1.8 Million faces

• 37 animated bipeds

• Animated debris

• Better than 60 FPS!

Challenge: Create a software backbone

• Audio

– OpenAL Toolkit

– Spatialized sound rendering

– Simple scene graph integration

Challenge: Create a software backbone Challenge: Create a content pipeline

• Requirements

– From design to render

– Reliable and easy to use

– Solid yet extensible

• Starting point: 3ds Max (www.autodesk.com)

– Industry standard rendering package

– Already used in-house

• X3D file format

– eXtensible 3D! – Everything we need, plus room to
grow

– Custom 3ds Max X3D export plugin

– Synchronization script to push files to cluster

– Custom OSG import plugin

Challenge: Create a content pipeline Challenge: A dynamic experience

• Scripted scenarios become predictable and
easily ignored.

• Much of the impact on training is lost.

• Solution

– Triggerable events

– Randomization

– On-demand scene changes

http://www.autodesk.com/

3/11/2014

3

• Triggerable events

– Events: animations, sounds, physical

– Triggers: keyboard, tracking, on load, other events

– Configuration file (XML)

• Set up events (sound parent, animation loop, etc.)

• Tie events to triggers

• Unit animations
– Supported through 3ds Max note tracks

• Scene properties

Challenge: A dynamic experience

• Triggering events

Challenge: A dynamic experience

• Randomization
– Event start, event frequency

• On-demand scene changes

– Pre-load scene graph per-scenario

– Reset environment on switch

– Lesson Learned: Flush OpenGL memory!

Challenge: A dynamic experience Challenge: Improve visual quality

• Requirement: Maintain real-time frame rate
– Transition from forward rendering to deferred

• Geometry pass stores object info to buffer

• Single per-pixel lighting pass decouples lighting from
scene complexity.

• Requirement: Maintain real-time frame rate
– Deferred buffers:

Diffuse Specular Position Normals Reflection Indirect Light Tagging

Challenge: Improve visual quality

• Requirement: Maintain real-time frame rate
– Transition from forward rendering to deferred

• Challenge: Anti-aliasing
– Several solutions – SMAA, FXAA, TSSSMAA

No AA TSSSMAA (4x SS) Hardware (8x CSAA)

Challenge: Improve visual quality

3/11/2014

4

• Requirement: Maintain real-time frame rate

– Expand and refine use of hardware shaders

• Use shaders for character animation and particles

Challenge: Improve visual quality

• Requirement: Maintain real-time frame rate

– Expand and refine use of hardware shaders

• Create dynamic shader compositing system

Diffuse + Specular + Normal Diffuse + Opacity

Challenge: Improve visual quality

• Requirement: Maintain real-time frame rate
– Lesson learned: Keep textures resident!

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1
4

0
2

8
0

3
1

2
0

4
1

6
0

5
2

0
0

6
2

4
0

7
2

8
0

8
3

2
0

9
3

6
1

0
4

0
1

1
4

4
1

2
4

8
1

3
5

2
1

4
5

6
1

5
6

0
1

6
6

4
1

7
6

8
1

8
7

2
1

9
7

6
2

0
8

0
2

1

R
e

n
d

e
r

ti
m

e
 (

ti
ck

s)

Frame

Render time vs Frame

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1
4

0
8

8
1

5
1

2
2

2
1

6
2

9
2

0
3

6
2

4
4

3
2

8
5

0
3

2
5

7
3

6
6

4
4

0
7

1
4

4
7

8
4

8
8

5
5

2
9

2
5

6
9

9
6

1
0

6
6

5
1

3
6

9
2

0
7

3
2

7
7

7
3

4
8

1
4

1

R
e

n
d

e
r

ti
m

e
 (

ti
ck

s)

Frame

Render time vs Frame (w/caching)

Challenge: Improve visual quality

• Requirement: 3ds Max == WAVE renderer
– Support more features

Indirect Lighting
(Light Propagation Volume)

Area Lights Real-Time Shadows

Challenge: Improve visual quality

• Requirement: 3ds Max == WAVE renderer
– Support multiple development paths

– Frequent artist/engineer collaboration
• Custom 3ds Max shader prompts new feature

integration and manages expectations

Challenge: Improve visual quality
Lessons Learned

• Leverage the tools available…

– … but stay flexible

• Keep track of graphics memory

– Manage what’s going in and out

• Close engineer/artist collaboration

3/11/2014

5

Future work

• Remove dead nodes from cluster at run-time

• Make use of additional CPU cores

• Make use of additional GPUs with direct
compute (CUDA)

• Improve character rendering (skin, hair)

• Implement cascaded versions of shadows and
indirect lighting

Appendix A: Toolkits

• VR Juggler (www.vrjuggler.org)
– Open source cluster-driven VR toolkit
– Started in 1997 by Dr. Carolina Cruz-Neira and a team of

students at Iowa State University’s Virtual Reality Applications
Center.

– Currently developed and maintained by Priority 5 Holdings, llc.

• OpenSceneGraph (OSG) (www.openscenegraph.org)
– OpenGL 3D graphics toolkit
– Open source
– Started in 1999 by Don Burns and Robert Osfield

• OpenAL
– Open source audio toolkit
– Started in 2000 by Loki Software
– Currently developed and maintained by Creative Technology

http://www.vrjuggler.org/
http://www.openscenegraph.org/

