Considerations for a Distributed 3D Virtual Environment

G. Jamie Cope Senior Research Engineer Val G. Hemming Simulation Center

Evolution of the WAVE

- Challenges
 - Create a software backbone
 - Create a content pipeline
 - Provide a dynamic user experience
 - Improve visual quality

Challenge: Create a software backbone

- Key pieces
 - Cluster synchronization
 - Rendering
 - Audio

WAVE

Challenge: Create a software backbone

• The goal:

Challenge: Create a software backbone

Cluster Sync	Complete	Extensible	Low-Latency	Scalable	Support
Hardware	×	×	✓	-	-
Chromium	×	-	✓	✓	✓
Flatland	✓	✓	-	×	×
VR Juggler	✓	✓	-	-	✓

- · Highly configurable and platform independent
- Network-driven software sync
 - Sync barriers for input, update, and render (buffer swap)
- Established and active user base

WAVE VR Juggler

Challenge: Create a software backbone

- Testing: VR Juggler
 - Latency and scalability
 - Designed for clustering, but can it handle ~50 nodes?

• X3D file format - eXtensible 3D! – Everything we need, plus room to grow - Custom 3ds Max X3D export plugin - Synchronization script to push files to cluster - Custom OSG import plugin WAVE OSG OpenAL VR Juggler

Challenge: Improve visual quality • Requirement: 3ds Max == WAVE renderer - Support multiple development paths - Frequent artist/engineer collaboration • Custom 3ds Max shader prompts new feature integration and manages expectations WAVE OpenAL VR Juggler

Lessons Learned • Leverage the tools available... – ... but stay flexible • Keep track of graphics memory – Manage what's going in and out • Close engineer/artist collaboration

Future work

- Remove dead nodes from cluster at run-time
- Make use of additional CPU cores
- · Make use of additional GPUs with direct compute (CUDA)
- Improve character rendering (skin, hair)
- Implement cascaded versions of shadows and indirect lighting

Appendix A: Toolkits

- VR Juggler (<u>www.vrjuggler.org</u>)
 - Open source cluster-driven VR toolkit
 - Started in 1997 by Dr. Carolina Cruz-Neira and a team of students at Iowa State University's Virtual Reality Applications Center.
- Currently developed and maintained by Priority 5 Holdings, Ilc.
- OpenSceneGraph (OSG) (www.openscenegraph.org)
 - OpenGL 3D graphics toolkitOpen source

 - Started in 1999 by Don Burns and Robert Osfield
- OpenAL
 - Open source audio toolkit
 - Started in 2000 by Loki Software
 - Currently developed and maintained by Creative Technology